
Containers - where to start?!
Different approaches to run software on the edge of the cloud, respective use case, development resources and scalability

INSYS icom, Michael Kress

Ready-to-use products

Use containers like apps on a smartphone.
Partners, open source communities or INSYS cre-
ated fully functional containers for a specific pupose
Users just download, configure and use them.

Example: icom Data Suite (iDS)

Figure 1:Configure instead of program

Example: Mirasoft AnyViz

Figure 2:Similar to iDS, but completelly cloud based

Pros and cons
•Configuring instead of programming
•Support from vendor
•May cost license fees
•Maybe hard to extend (add features)

Recommendation

Ideal for non-programmers.

Well known Linux distributions

Use Linux distributions like on a Raspberry Pi.
Minimalistic versions of standard Linux distribu-
tions are often well known to user. There are com-
mon packet managers included (like apt-get, apk),
so additional software can be installed like on a nor-
mal Linux PC.

Example: Debian Linux

Figure 3:Debian is a base for a lot of other distributions.

Example: Alpine Linux

Figure 4:Alpine Linux tries to be as slim as possible.

Pros and cons

•Well known tools (like packet managers)
• Incredible wide range of available software
•Very good community support
•Dependent on distribution decisions
•Container size can quickly grow very large
•Updates after long time can be problematic

Recommendation

Ideal for fast PoC (Proof of Concept).

Basic Containers

Use script languages to program without need
for a (cross) compiler.
There are containers with installed programming
languages like Python or NodeJS. Users can log into
such a container and immediatelly write their pro-
grams. Alternatively a program is written on a PC
and simply copied into the container.

Example: Python scripts
This little script subscribes to an MQTT broker and
displays received data on a simple HTTP server.

1 import paho.mqtt.client as mqtt
2 import http.server
3 import socketserver
4
5 def on_connect(client, userdata, flags, rc):
6 client.subscribe("machine/temp")
7
8 def on_message(client, userdata, msg):
9 with open("index.html", "w", encoding=’utf-8’) as file:

10 file.write(f"<html><body>Temperature:
{msg.payload}</body></html>")

11
12 mqtt_client = mqtt.Client()
13 mqtt_client.on_connect = on_connect
14 mqtt_client.on_message = on_message
15 mqtt_client.connect_async("mqtt.broker.de", 8889)
16 mqtt_client.loop_start()
17
18 Handler = http.server.SimpleHTTPRequestHandler
19 with socketserver.TCPServer(("", 8080), Handler) as httpd:
20 httpd.serve_forever()

Pros and cons
•Minimal environment for low container size
•Programming experience like on PC
• Independent from architecture
•Sustainable because of little mainantance
•No separate SDK or PC software neccessary,
programming within container
•Dependent on creator of base container
•Extending functionality can be problematic

Recommendation

Ideal for scripters to solve smaller tasks.

Develop for yourself

Use build scripts and SDK (Software Development
Kit) to create own containers.
Intended for experts: Use the programming lan-
guage of your choice, use available open or closed
source as you please. The container might even con-
sist of only a single binary! Collection of useful links:
https://m3-container.net/#scripts

Basic container as template
There are build scripts on github that serve as
templates for own containers. Use for all
programming languages like C/C++, go or C#.

Figure 5:Scripts on github in combination with the SDK create
containers

Pros and cons
•Control over everything
•Minimal container size
• Integrate into your existing CI/CD pipeline
• 100% traceable builds
•Minimum surface for hacking attempts
•Least external dependencies
•Requires deeper knowledge
• Initially requires more development time

Recommendation

Ideal for professional developers, optimal for
mass roll out on huge scale.

https://m3-container.net/#scripts

